
Efficient Instant-Fuzzy Search with Proximity

Ranking

Inci Cetindil∗, Jamshid Esmaelnezhad†, Taewoo Kim‡ and Chen Li§

Department of Computer Science, University of California, Irvine

{∗icetindi, †jesmaeln, ‡taewok2, §chenli}@ics.uci.edu

Abstract—Instant search is an emerging information-retrieval
paradigm in which a system finds answers to a query instantly
while a user types in keywords character-by-character. Fuzzy
search further improves user search experiences by finding
relevant answers with keywords similar to query keywords. A
main computational challenge in this paradigm is the high-
speed requirement, i.e., each query needs to be answered within
milliseconds to achieve an instant response and a high query
throughput. At the same time, we also need good ranking
functions that consider the proximity of keywords to compute
relevance scores.

In this paper, we study how to integrate proximity information
into ranking in instant-fuzzy search while achieving efficient time
and space complexities. We adapt existing solutions on proximity
ranking to instant-fuzzy search. A naı̈ve solution is computing all
answers then ranking them, but it cannot meet this high-speed
requirement on large data sets when there are too many answers,
so there are studies of early-termination techniques to efficiently
compute relevant answers. To overcome the space and time
limitations of these solutions, we propose an approach that focuses
on common phrases in the data and queries, assuming records
with these phrases are ranked higher. We study how to index
these phrases and develop an incremental-computation algorithm
for efficiently segmenting a query into phrases and computing
relevant answers. We conducted a thorough experimental study
on real data sets to show the tradeoffs between time, space, and
quality of these solutions.

I. INTRODUCTION

Instant Search: As an emerging information-access
paradigm, instant search returns the answers immediately
based on a partial query a user has typed in. For example, the
Internet Movie Database, IMDB, has a search interface that
offers instant results to users while they are typing queries1.
When a user types in “sere”, the system returns answers
such as “Serena”, “Serenity”, “Serendipity”, and
“Serena Williams”. Many users prefer the experience of
seeing the search results instantly and formulating their queries
accordingly instead of being left in the dark until they hit
the search button. Our recent study showed that this new
information-retrieval method helps users find their answers
quickly with less effort [1].

Fuzzy Search: Users often make typographical mistakes
in their search queries. Meanwhile, small keyboards on mobile
devices, lack of caution, or limited knowledge about the data
can also cause mistakes. In this case we cannot find relevant
answers by finding records with keywords matching the query
exactly. This problem can be solved by supporting fuzzy

1http://www.imdb.com, as of July 2013.

search, in which we find answers with keywords similar to
the query keywords. Figure 1 shows an instant-fuzzy search
interface on a people directory using this technology. The
system finds an answer to the keyword query “prefessor
wenkatsu” even though the user mistyped a prefix of the
name “venkatasubramanian”. Combining fuzzy search
with instant search can provide an even better search expe-
riences, especially for mobile-phone users, who often have
the “fat fingers” problem, i.e., each keystroke or tap is time
consuming and error prone.

Fig. 1. Instant-fuzzy search on the UC Irvine people directory
(http://psearch.ics.uci.edu).

Finding Relevant Answers within Time Limit: A main
computational challenge in this search paradigm is its high-
speed requirement. It is known that to achieve an instant speed
for humans (i.e., users do not feel delay), from the time a user
types in a character to the time the results are shown on the
device, the total time should be within 100 milliseconds [2].
The time includes the network delay, the time on the search
server, and the time of running code on the device of the user
(such as javascript in browsers). Thus the amount of time the
server can spend is even less. At the same time, compared to
traditional search systems, instant search can result in more
queries on the server since each keystroke can invoke a query,
thus it requires a higher speed of the search process to meet
the requirement of a high query throughput. What makes the
computation even more challenging is that the server also
needs to retrieve high-quality answers to a query given a
limited amount of time to meet the information need of the
user.

Problem Statement: In this paper, we study the following
problem: how to integrate proximity information into ranking
in instant-fuzzy search to compute relevant answers efficiently?
The proximity of matching keywords in answers is an impor-
tant metric to determine the relevance of the answers. Search
queries typically contain correlated keywords, and answers
that have these keywords together are more likely what the
user is looking for [3]. For example, if the search query is
“Michael Jackson”, the user is most likely looking for
the records containing information about the singer Michael
Jackson, while documents containing “Peter Jackson”
and “Michael J Fox” would be less relevant.

978-1-4799-2555-1/14/$31.00 © 2014 IEEE ICDE Conference 2014328

Our Contributions: We study various solutions to this
important problem and show the insights on the tradeoffs of
space, time, and answer quality. One approach is to first find
all the answers, compute the score of each answer based on
a ranking function, sort them using the score, and return the
top results. However, enumerating all these answers can be
computationally expensive when these answers are too many.
This case is more likely to happen compared to a traditional
search system since query keywords in instant search are
treated as prefixes and can have many completions. In addition,
fuzzy search makes the situation even more challenging since
there can be many keywords with a prefix similar to a query
prefix. For example, the keyword prefix “cleam’ can have
many similar completions such as “clean”, “clear”, and
“cream”. As a consequence, the number of answers in instant-
fuzzy search is much larger than that in traditional search.

An efficient way to address the problem is to use early-
termination techniques that allow the engine to find top an-
swers without generating all the answers of the query [4]. The
main idea is to traverse the inverted index of the data following
a certain order, and stop the traversal once we are sure that the
most relevant results are among those records we have visited.
The traversal order of the inverted index is critical to be able
terminate the traversal sooner. However, using a proximity-
aware ranking in early termination is challenging, because the
document order in the inverted index is typically based on
individual keywords. At the same time, proximity information
is between different keywords and does not depend on the
order of an inverted list.

There are studies on building an additional index for each
term pair that appears close to each other in the data, or for
phrases [5], [6], [7]. However, building an index for the term
pairs will consume a significant amount of space. For instance,
the approach in [5] reported an index of 1.3 TB for a collection
of 25 million documents, and reduced the size to 343.5 GB by
pruning the lists horizontally. In addition, these studies focus
on two-keyword queries only, and do not consider queries with
more keywords.

Studies show that users often include entities such as
people names, companies, and locations in their queries [8].
These entities can contain multiple keywords, and the user
wants these keywords to appear in the answers as they are, i.e.,
the keywords are adjacent and in the same order in the answers
as in the query. Users sometimes enter keywords enclosed by
quotation marks to express that they want those keywords to be
treated as phrases [3]. Based on this observation, we propose
a technique that focuses on the important case where we rank
highly those answers containing the query keywords as they
are, in addition to adapting existing solutions to instant-fuzzy
search. To overcome the known limitations of existing solu-
tions, we propose an approach that indexes additional common
phrases in addition to indexing single terms. This method can
not only avoid the space overhead of indexing all the term pairs
or phrases, but also improve ranking significantly by efficiently
finding relevant answers that contain these common phrases.
To find relevant answers, we identify the indexed phrases in
the query, then access their inverted lists before accessing
single-keyword lists. If the query has different ways to be
segmented into phrases, we consider all these segmentations
and rank them. Each segmentation corresponds to a unique

index-access strategy to execute the query. We execute the
ranked segmentations one by one until we compute the most
relevant answers or enough time is spent. We focus on a main
challenge in this approach, which is how to do incremental
computation to answer a query so that we do not need to
compute the results from scratch for each keystroke.

To summarize, we make the following contributions in this
paper. (1) We adapt existing solutions for proximity ranking
into instant-fuzzy search. (2) We propose a space-efficient
indexing approach for utilizing proximity information to rank
answers in instant-fuzzy search. (3) We present an incremental-
computation method for identifying the indexed phrases in
the query. (4) We propose methods to compute segmentations
efficiently and decide in which order to execute these segmen-
tations. (5) We conduct a thorough experimental study on real
data sets to compare the space, time, and relevancy tradeoffs
of the proposed approaches.

A. Related Work

Auto-Completion: In auto-completion, the system sug-
gests several possible queries the user may type in next. There
have been many studies on predicting queries (e.g., [9], [10]).
Many systems do prediction by treating a query with multiple
keywords as a single prefix string. Therefore, if a related
suggestion has the query keywords but not consecutively, then
this suggestion cannot be found.

Instant Search: Many recent studies have been focused on
instant search, also known as type-ahead search. The studies
in [11], [12], [13] proposed indexing and query techniques to
support instant search. The studies in [14], [15] presented trie-
based techniques to tackle this problem. Li et al. [16] studied
instant search on relational data modeled as a graph.

Fuzzy Search: The studies on fuzzy search can be classi-
fied into two categories, gram-based approaches and trie-based
approaches. In the former approach, sub-strings of the data
are used for fuzzy string matching [17], [18], [19], [20]. The
second class of approaches index the keywords as a trie, and
rely on a traversal on the trie to find similar keywords [14],
[15]. This approach is especially suitable for instant and fuzzy
search [14] since each query is a prefix and trie can support
incremental computation efficiently.

Early Termination: Early-termination techniques have
been studied extensively to support top-k queries effi-
ciently [21], [22], [23], [5], [6], [7]. Li et al. [4] adopted
existing top-k algorithms to do instant-fuzzy search. Most of
these studies reorganize an inverted index to evaluate more
relevant documents first. Persin et al. [23] proposed using
inverted lists sorted by decreasing document frequency. Zhang
et al. [22] studied the effect of term-independent features in
index reorganization.

Proximity Ranking: Recent studies show proximity is
highly correlated with document relevancy, and proximity-
aware ranking improves the precision of top results signifi-
cantly [24], [25]. However, there are only a few studies that
improve the query efficiency of proximity-aware search by
using early-termination techniques [26], [5], [6], [7]. Zhu et
al. [26] exploited document structure to build a multi-tiered
index to terminate the search process without processing all the

329

tiers. The techniques proposed in [5], [6] create an additional
inverted index for all term pairs, resulting in a large space.
To reduce the index size, Zhu et al. [7] proposed to build a
compact phrase index for a subset of the phrases. However,
both [6] and [7] studied the problem for two-keyword queries
only.

Our work differs from the earlier studies since we focus on
how to instantly compute relevant answers based on proximity
information as the user is typing keywords character by char-
acter. The high-efficiency demand requires novel incremental-
computation algorithm, which is the main focus of this work.
Also notice that our technique does not assume availability of
query log, which is needed by many query-suggestion systems.

II. PRELIMINARIES

Data: Let R = {r1, r2, . . . , rn} be a set of records with text
attributes, such as the tuples in a relational table or a collection
of documents. Let D be the dictionary that includes all the
distinct words of R. Table I shows an example data set of
medical publication records. Each record has text attributes
such as title and authors. We will use this sample data set
throughout the paper to explain our techniques.

Query: A query q is a string that contains a list of keywords
〈w1, w2, . . . , wl〉, separated by space. In an instant-search
system, a query is submitted for each keystroke of a user. When
a user types in a string character by character, each query
is constructed by appending one character at the end of the
previous query. The last keyword in the query represents the
word currently being typed, and is treated as prefix, while the
first l−1 keywords 〈w1, w2, . . . , wl−1〉 are complete keywords.
(Our techniques can be extended to the case where each
keyword in the query is treated as a prefix.) For instance, when
a user types in “brain tumor” character by character, the
system receives the following queries one by one: q1 = 〈b〉,
q2 = 〈br〉, . . . , q10 = 〈brain, tumo〉, q11 = 〈brain, tumor〉.

Answers: A record r from the data set R is an answer to
the query q if it satisfies the following conditions: (1) For
1 ≤ i ≤ l − 1, it has a word similar to wi, and (2) it
has a keyword with a prefix similar to wl. The meaning of
“similar to” will be explained shortly. For instance, r1, r3, and
r4 are answers to q = 〈heart, surge〉, because all of them
contain the keyword “heart”. In addition, they have words
“surgery”, “surgeons”, and “surgery”, respectively,
each of which has a prefix similar to “surge”. Record r6 is
also an answer since it has an author named “hart” similar
to the keyword “heart”, and also contains “surgery” with
a prefix “surge” matching the last keyword in the query.

The similarity between two keywords can be measured
using various metrics such as edit distance, Jaccard similarity,
and cosine similarity. In this work we focus on the commonly
used function, edit distance. The edit distance between two
strings is the minimum number of single-character operations
(insertion, deletion, and substitution) to transform one string to
the other. For example, the edit distance between the keywords
“Kristina” and “Christina” is 2, because the former
can be transformed to the latter by substituting the character

“K” with “C”, and inserting the character “h” after that. Let
ed (wi, p) be the edit distance between a query keyword wi

and a prefix p from a record, and δ be a threshold. We say
p is similar to wi if ed (wi, p) ≤ δ. Our techniques can
be extended to other variants of the edit distance function,
such as a function that allows a swap operation between two
characters, a function that uses different costs for different
edit operations, and a function that considers a normalized
threshold based on the string lengths.

Ranking: Each answer to a query is ranked based on its
relevance to the query, which is defined based on various pieces
of information such as the frequencies of query keywords in
the record, and co-occurrence of some query keywords as a
phrase in the record. Domain-specific features can also play
an important role in ranking. For example, for a publication,
its number of citations is a good indicator of its impact, and
can be used as a signal in ranking. In this paper, we mainly
focus on the effect of phrase matching in ranking. For example,
for the query q = 〈heart, surgery〉, record r1 in Table I
containing the phrase “heart surgery” is more relevant
than the record r4 containing the keywords “heart” and
“surgery” separately.

Basic Indexing: As the techniques described in Ji et al. [14]
that combines fuzzy and instant search, we use three indexes
to answer queries efficiently, a trie, an inverted index, and a
forward index. In particular, we build a trie for the terms in
the dictionary D. Each path from the root to a leaf node in the
trie corresponds to a unique term in D. Each leaf node stores
an inverted list of its term. We also build a forward index,
which includes a forward list that contains encoded integers
of the terms for each record. We can use this index to verify
if a record contains a keyword matching a prefix condition.

Top-k Query Answering: Given a positive integer k, we
compute the k most relevant answers to a query. One way
to compute these results is to first find all the results matching
the query conditions, then rank them based on their score. An
alternative solution is to utilize certain properties of the ranking
function, and compute the k most relevant results using early-
termination techniques without computing all the results.

III. BASIC ALGORITHMS FOR TOP-k QUERIES

A. Computing All Answers

A naı̈ve solution is to first compute all the answers match-
ing the keywords as follows. For each query keyword, we find
the documents containing a similar keyword by computing the
union of the inverted lists of these similar keywords. For the
last query keyword, we consider the union of the inverted lists
for the completions of each prefix similar to it. We intersect
these union lists to find all the candidate answers. Then we
compute the score of each answer using a ranking function,
sort them based on the score, and return the top-k answers.

A main advantage of this approach is that it supports all
kinds of ranking functions. An example ranking function is
a linear weighted sum of content-based relevancy score and

330

TABLE I. EXAMPLE DATA OF MEDICAL PUBLICATIONS. THE TEXT IN BOLD REPRESENTS THE INDEXED PHRASES.

Record ID Title Authors

r1 Royal Brompton Hospital challenges decision to close its heart surgery unit. Clare Dyer

r2 EGFR Mutations in Squamous Cell Lung Cancer in Never-Smokers. Christina S Baik, . . .

r3 The training of congenital heart surgeons. Emile A Bacha

r4 Plastic surgery of the mitral valve in patients with coronary heart disease. I A Borisov, . . .

r5 Organizing hematoma mimicking brain tumor. Ahmet Turan Ilica, . . .

r6 Comment on the “update on blood conservation for cardiac surgery”. James Hart, . . .

proximity score that consider the similarity of each matching
keyword. For example, we can use a variant of the scoring
model proposed by Büttcher et al. [27], which can be enhanced
by considering similarity based on edit distance. This ranking
function uses Okapi BM25F [28] as content-based relevancy
score, and computes the proximity score between each pair of
adjacent query term occurrences as inversely proportional to
the square of their distance. We can adapt this ranking function
by multiplying each term-related computation with a weight
based on the similarity between the matching term and its
corresponding query keyword.

A main disadvantage of this approach is that its perfor-
mance can be low if there are many results matching the query
keywords, which may take a lot of time to compute, rank, and
sort. Thus it may not meet the high-performance requirement
in an instant-search system.

B. Using Early Termination

To solve this problem, Li et al. [4] developed a technique
that can find the most relevant answers without generating all
the candidate answers. In this approach, the inverted list of a
keyword is ordered based on the relevancy of the keyword to
the records on the list. This order guarantees that more relevant
records for a keyword are processed earlier. This technique
maintains a heap for each keyword w to partially compute the
union of the inverted lists for w’s similar keywords ordered
by relevancy. By processing one record at a time, it aggregates
the relevancy score of each keyword with respect to the record
using a monotonic ranking function. For example, we can use
a variant of Okapi BM25F as a monotonic ranking function,
which is enhanced by considering a similarity based on edit
distance. This technique works for many top-k algorithms. For
instance, we can use the well-known top-k query processing
algorithm called the Threshold Algorithm [21] to determine
when to terminate the computation. In particular, we can
traverse the inverted lists and terminate the traversal once
we are guaranteed that the top-k answers are among those
records we have visited. The way the lists are sorted and
the monotonicity property of the ranking function allow us
to do this early termination, which can significantly improve
the search performance and allow us to meet the high-speed
requirement in instant search. However, this approach does
not consider the proximity in ranking due to the monotonicity
requirement of the ranking function.

C. Using Term-Pair Index

In order to support term proximity ranking in top-k query
processing, [6] introduces an additional term-pair index, which
contains all the term pairs within a window size w in a
document along with their proximity information. For example,

for w = 2, the term-pair (t1, t2) is indexed if a document
contains “t1 t2”, “t1 tx t2”, or “t1 tx ty t2”. It is clear that

the number of term pairs for the window size w can be
(

w+2
2

)

=
(w+2)(w+1)

2 . Therefore, as the window size increases, the
number of additional term pairs will increase quadratically.
The authors also propose techniques to reduce index size while
not affecting retrieval performance much. One of the proposed
techniques is not creating a term-pair list for a pair if both
terms are very rare. The intuition behind this strategy is that
the search engine does not need too much time to process
both terms even if there is no term-pair list since inverted lists
of these terms are relatively short compared to those of other
terms.

Given a query q = 〈t1, t2〉, if the index contains the
pairs (t1, t2) or (t2, t1), their inverted lists are processed, their
relevancy scores are computed based on the linear combi-
nation of content-based score and the proximity score, and
the temporary top-k answer list is maintained. Then the top-
k answer computation continues with the inverted lists of
single keywords t1 and t2. Since the answers computed in
the first step have high proximity scores, the early termination
condition can be quickly satisfied in the second step.

We can adapt the approach in [6] into instant-fuzzy search,
specifically to the approach described in III-B as follows. First,
we insert the term pairs based on the specified window size w
to the index as phrases. Therefore, the trie structure contains
the phrase “t1 t2” for the term pair (t1, t2). When computing
top-k results for a query q = 〈t1, t2〉, first we find the phrases
similar to “t1 t2” and “t2 t1”, and retrieve their inverted
lists. Then we continue with the normal top-k computation
for separate keywords t1 and t2. The main limitation of this
approach is that it only support two-keyword queries, and does
not work if the query has more than two keywords.

IV. PHRASE-BASED INDEXING AND LIFE-CYCLE OF A

QUERY

To overcome the limitations of the basic approaches, we
develop a technique based on phrase-based indexing. In this
section we give the detail of this approach.

A. Phrase-Based Indexing

Intuitively, a phrase is a sequence of keywords that has
high probability to appear in the records and queries. We
study how to utilize phrase matching to improve ranking in
this top-k computation framework. We assume an answer
having a matching phrase in the query has a higher score
than an answer without such a matching phrase. To be able
to still do early termination, we want to access the records
containing phrases first. For instance, for the query q =

331

〈heart, surgery〉, we want to access the records containing
the phrase “heart surgery” before the records containing
“heart” and “surgery” separately. Notice that the frame-
work sorts the inverted list of a keyword based on relevancy of
its records to the keyword. If we order the inverted list of the
keyword “surgery” based on the relevancy to the phrase
“heart surgery”, the best processing order for another
phrase, say, “plastic surgery”, may be different.

Based on this analysis, we need to index phrases to be
able to retrieve the records containing these phrases efficiently.
However, the number of phrases up to a certain length in
the data set can be much larger than the number of unique
words [29]. Therefore, indexing all the possible phrases can
require a large amount of space [5]. To reduce the space over-
head we need to identify and index those phrases that are more
likely to be searched. We consider a set of important phrases E
that are likely to be searched for indexing, where each phrase
appears in records of R. The set E can be determined in vari-
ous ways such as person names, points of interest, and popular
n-grams in R. Examples include Michael Jackson, New
York City, and Hewlett Packard. Let W be the set of
all distinct words in R. We will refer the set W ∪ E as the
dictionary D, and call each item t ∈ D a term. In Table I, the
indexed phrases are shown in bold.

Figure 2 shows the index structures for the sample data in
Table I. For instance, the phrase “heart surgery unit”
is indexed in the trie in Figure 2(a), in addition to the key-
words “heart”, “surgery”, and “unit”. The leaf nodes
corresponding to these terms are numbered as 5, 3, 11, and
12, respectively. The leaf node for the term “heart” points
to its inverted list that contains the records r1, r3, and r4.
In addition, Figure 2(b) shows the forward index, where the
keyword id 3 for the term “heart” is stored for these records.

B. Life Cycle of a Query

To deal with a large data set that cannot be indexed by a
single machine, we assume the data is partitioned into multiple
shards to ensure the scalability. Each server builds the index
structures on its own data shard, and is responsible for finding
the answers to a query in its shard. The Broker on the Web
server receives a query for each keystroke of a user. The
Broker is responsible for sending the requests to multiple
search servers, retrieving and combining the results from them,
and returning the answers back to the user.

Figure 3 shows the query flow in a server for one shard.
When a search server receives a request, it first identifies
all the phrases in the query that are in the dictionary D,
and intersects their inverted lists. For this purpose, we have
a module called Phrase Validator that identifies the phrases
(called “valid phrases”) in the query q that are similar to
a term in the dictionary D. For example, for the query
q = 〈heart, surgery〉, “heart” is a valid phrase for the data
set in Table I, since the dictionary contains the similar terms
“heart” and “hart”. In addition, “surgery” and “heart
surgery” are also valid phrases. To identify all the valid
phrases in a query, the Phrase Validator uses the trie-based
algorithm in [14], which can compute all the similar terms
to a complete or prefix term efficiently. The Phrase Validator
computes and returns the active nodes for all these terms, i.e.,

Root

s

u

r

g

e

r

y

o

n

s
10

11

r3

r1

r4

r6

u

n

i

t

r1

l

u

n

g

c

a

n

c

e

r
9

8

r2

r2

12

h

e

a

r

t

s

r

g

e

r

y

u

n

u

o

s

p

t

a

l

i

m

a

t

o

a

a

r

t
2

3

6 7

r6

r3

r1

r1

r3

r4

r5

o

n

s

i

t
5

r1

4

m

c

a

n

c

e

r

r2

1

Record IDs of Keywords (Sorted)

r1 3, 5, 7, 11, 12

r2 1, 8, 9

r3 3, 4, 10

r4 3, 11

r5 6

r6 2, 11

(a) Trie with inverted lists at leaf nodes.

(b) Forward index.

Fig. 2. Index structures.

those trie nodes whose string corresponding to the path from
the root to this node is similar to the query phrase.

Phrase

Validator

Index Searcher

Cache

Query Plan

Builder

Valid

Phrases

Query

Plan

Forward

Index

Indices

Trie

Inverted

Index

Query

Fig. 3. Server architecture of instant-fuzzy search.

If a query keyword appears in multiple valid phrases, the
query can be segmented into phrases in different ways. Let
“|” denote a place between two adjacent valid phrases. For in-
stance, “heart | surgery” and “heart surgery” are
two different segmentations for q. We will refer the query
segmentations that consist of only valid phrases as valid
segmentations. After identifying the valid phrases, the Query
Plan Builder generates a Query Plan Q, which contains all the
possible valid segmentations in a specific order. The ranking
of Q determines the order in which the segmentations will be
executed. After Q is generated, the segmentations are passed
into the Index Searcher one by one until the top-k answers are
computed, or all the segmentations in the plan are used. The
Index Searcher uses the algorithm described in [4] to compute
the answers to a segmentation. A result set is then created by

332

combining the result sets of the segmentations of Q.

Since the subsequent queries of the user typically share
many keywords with previous queries due to incremental
typing, it is very important to do the computation incrementally
and distribute the computational cost of a query between its
preceding queries. For this reason, we have a Cache module
that stores some of the computed results of early queries that
can be used to expedite the computation of later queries.
The Phrase Validator uses the Cache module to validate a
phrase without traversing the trie from scratch, while the Index
Searcher benefits from the Cache by being able to retrieve the
answers to an earlier query to reduce the computational cost.

The rest of the paper is organized as follows. In Section V
we study how to identify valid phrases in a query, and
present an algorithm to do the computation incrementally. In
Section VI we explain how a query is segmented based on
the computed valid phrases and how these segmentations are
ranked to generate a query plan. We present our experimental
results in Section VII and conclude in Section VIII.

V. COMPUTING VALID PHRASES IN A QUERY

In this section we study how to efficiently compute the
valid phrases in an instant-search query, i.e., those phrases that
match the terms in the dictionaryD extracted from the data set.
We first give a basic approach that computes the valid phrases
from scratch, then develop an efficient algorithm for doing
incremental computation using the valid phrases of previous
queries.

A. Basic Approach

A query with l keywords can be segmented into m phrases

in
(

l−1
m−1

)

different ways, because there are l − 1 places to
choose for m − 1 separators to obtain m phrases. Therefore,

the total number of possible segmentations,
∑l

i=1

(

l−1
i−1

)

=

2l−1, grows exponentially as the number of query keywords
increases. Fortunately, the typical number of keywords in a
search query is not large. For instance, in Web search it is
between 2 and 4 [30]. Moreover, we do not need to consider
all possible segmentations since some of them are not valid.
A segmentation can produce an answer to a query only if
each phrase of the segmentation is a valid phrase, i.e., it
is similar (possibly as a prefix) to a term in D. For the
query q = 〈heart, surgery, unit〉, there is no term in D
similar to the phrase “surgery unit”, and the result set
for each segmentation containing this phrase is empty. Hence,
the segmentation “heart | surgery unit” is not valid.
Based on this observation, we only need to consider the valid
phrases and segmentations that consist of these phrases.

We now show how to compute valid phrases. For a query
q = 〈w1, w2, . . . , wl〉, there are C(m) = l − m + 1 possi-
ble phrases having m keywords: 〈w1 . . . wm〉, 〈w2 . . . wm+1〉,
. . . , 〈wl−m+1, . . . wl〉. Therefore, the total number of pos-

sible phrases is
∑l

i=1 C(i) = l(l+1)
2 . However, not all of

these phrases are valid. Using the active-node computation
described in [14], we can find a valid phrase by verifying
whether the trie has a prefix similar to this phrase. Using
a trie for this validation has several advantages. Intuitively,
if there is no prefix in the trie similar to a phrase p1,

then a phrase p2 with p1 as a prefix will not have any
similar prefixes in the trie. For example, consider a query
q = 〈heart, failure, patients〉. If there is no prefix on the
trie similar to the phrase “heart failure”, then there is no
prefix similar to the phrase “heart failure patients”.
This property helps us prune some phrases without computing
their active nodes.

The trie also allows incremental validation for phrases
with the same prefix. For example, the active nodes of the
phrase “heart failure” can be computed by starting
from the active nodes of the phrase “heart” and adding a
space (“ ”) and each character in “failure”. To exploit
this property, we need to validate the phrases in a specific
order. Specifically, for a query q = 〈w1, w2, . . . , wl〉, for
each keyword wi, we traverse the trie to find the prefixes
similar to a phrase starting with wi. To check all the phrases
starting with wi, the keywords wi+1, wi+2, . . . , wl are added
incrementally during the traversal. The traversal is stopped
either when all the keywords after wi are added or when the
obtained active-node set is empty. In the latter case, the phrases
with more keywords will also have an empty active-node set.
For example, for q = 〈heart, surgery, unit〉, first we find
all the trie prefixes similar to “heart”. Then, starting from
the active-node set of “heart”, we compute the active-node
set for “heart surgery” incrementally. The active-node
set of “heart surgery unit” is computed similarly by
using the active-node set of “heart surgery”. The valid
phrases that start with a keyword similar to “surgery” and
“unit” are computed similarly.

B. Incremental Computation of Valid Phrases

The basic approach described above does not utilize the fact
that the subsequent queries of a user typically differ from each
other by one character, and their valid-phrase computations
have a lot of overlap. In this section, we study how to
incrementally compute the valid phrases of a query qj using
the cached valid phrases of a previous query qi. The valid
phrases of qi are cached to be used for later queries that start
with the keywords of qi.

Figure 4 shows the active nodes of the valid phrases in the
queries q1 = 〈heart, surge〉, q2 = 〈heart, surgery〉, and
q3 = 〈heart, surgery, unit〉. In the figure, q1 and q2 have
the same active nodes n1 and n2 for the phrase “heart”.
Moreover, the phrase “surgery” in q2 has an active node
n5, which is close to the active node n3 of phrase “surge”
in q1. Similarly, the phrase “heart surgery” in q2 has
an active node n6, which is close to the active node n4 of
phrase “heart surge” in q1. Hence, we can use the active
nodes n3 and n4 to compute n5 and n6 efficiently. The key
observation in this example is that the computation is needed
only for the phrases containing the last query keyword.

If a query qj extends a query qi by appending additional
characters to the last keyword wl of qi, then each valid phrase
of qi that ends with a keyword other than wl is also a valid
phrase of qj . The valid phrases of qi that end with the keyword
wl have to be extended to be valid phrases of qj . The new
active-node set can be computed by starting from the active-
node set of the cached phrase, and traversing the trie for the
additional characters to determine if the phrase is still valid.

333

……

h

 surge

……
surge

n6

eartart

n1 n2

n5

ry

ry

unit

 unit

n3

n4

n7

n8

Active node for
q1 = <heart, surge>

Active node for
q2 = <heart, surgery>

Active node for
q3 = <heart, surgery, unit>

Fig. 4. Active nodes for valid phrases.

Another case where we can use the cached results of
the query qi is when the query qj has additional keywords
after the last keyword wl of qi. The queries q2 and q3 in
Figure 4 are an example of this case. In this example, all
the active nodes of q2 (i.e., n1, n2, n5, and n6) are also
active nodes for q3. In addition to these active nodes, q3
has the active nodes n7 and n8 for the phrases that contain
the additional keyword “unit” (i.e., “unit” and “heart
surgery unit”). The phrase “unit” is a new phrase, and
its active node (n7) is computed from scratch. However, the
phrase “heart surgery unit” has a phrase from q2 as a
prefix, and its active node n8 can be computed incrementally
starting from n6. As seen in the example, if the query qj has
additional keywords after the last keyword wl of qi, then all of
the valid phrases of qi are also valid in qj . Moreover, some of
the valid phrases of qi that end at wl can be extended to become
valid phrases of qj . If a phrase starting with the mth keyword
of qi, wm (m ≤ l), can be extended to a phrase containing the
nth keyword of qj , wn (l < n), the phrase wm . . . wn can be
computed by using the valid phrase wm . . . wl of qi.

Based on these observations, we cache a vector of valid
phrases Vi for a query qi with the following properties: (1)
Vi has an element for each keyword in qi, i.e., |Vi| = l; (2)
The nth element in Vi is a set of starting points of the valid
phrases that end with the keyword wn and their corresponding
active-node sets.

Figure 5 shows the vectors of valid phrases V1, V2, and
V3 for the queries q1, q2, and q3, respectively. For example,
the third element of V3 (shaded) shows the starting points of
all the valid phrases ending with a prefix similar to “unit”
and their active-node sets. In other words, the pair “(1, S1,3 =
{n8})” means that the trie node n8 in S1,3 represents a term
prefix in the dictionary that is similar to the phrase “heart
surgery unit”. Notice that all the end points in Vi also
have themselves as the starting point, since each keyword can
be a phrase by itself.

We develop an algorithm for computing the valid phrases
of a query incrementally using previously cached vector of
valid phrases. The pseudo code is shown in Algorithm 1. As

(1, S1,1={n1, n2})
(2, S2,2={n3})

(1, S1,2={n4})

(1, S1,1={n1, n2})
(2, S2,2={n5})

(1, S1,2={n6})

(3, S3,3={n7})

(1, S1,3={n8})
(1, S1,1={n1, n2})

(2, S2,2={n5})

(1, S1,2={n6})

Copy

Copy Copy

Incremental

Incremental
New

V1

V2

V3

q1=<heart,surge>

q2=<heart,surgery>

q3=<heart,surgery,unit>

Fig. 5. Computing valid phrases incrementally using cached valid phrases
of previous queries.

an example, Figure 5 shows how a cached valid-phrase vector
is used for incremental computation. Assuming V1 in the figure
is stored in the cache, vector V2 can be incrementally computed
using V1 as follows. First, the first element of V1 is copied to
V2, because q1 and q2 share the same first keyword (lines 4–
5). Then, the second element of V2 is computed incrementally
starting from the active-node sets S2,2 and S1,2 in the second
element of V1 (lines 8–14). The incremental computation
from V2 to V3 is an example case where there are additional
keywords in the new query. In this case, we copy the first two
elements of V2 to V3 since the queries share their first two
keywords. We compute the third element of V3 based on the
active-node sets of the second element of V2 (lines 15–21). In
particular, we traverse the trie starting from nodes n5 and n6 to
see if it contains a term prefix similar to “surgery unit” or
“heart surgery unit’, respectively. The traversal results
in no active node for n5 and the active node n8 for n6. Thus
we add the pair (1, S1,3 = {n8}) to the third element of
V3, indicating that there is a valid phrase starting from the
1st keyword and ending at the 3rd keyword. We also add an
element (3, S3,3 = {n7}) for the 3rd keyword “unit” since
it is also a valid phrase with an active node n7 (lines 22–30).

VI. GENERATING EFFICIENT QUERY PLANS

As explained in Section IV, the Phrase Validator computes
the valid phrases in a query using the techniques described
in Section V, and passes the valid-phrase vector to the Query
Plan Builder. In this section, we study how the Query Plan
Builder generates and ranks valid segmentations.

A. Generating Valid Segmentations

After receiving a list of valid phrases, the Query Plan
Builder computes the valid segmentations. The basic segmen-
tation is the one where each keyword is treated as a phrase.
For example, for the query q = 〈heart, surgery, unit〉,
“heart | surgery | unit” is the basic segmentation.
If there are multi-keyword phrases in the query, then there
will be other segmentations as well. In the running exam-
ple, “heart surgery” is a valid phrase, and “heart
surgery | unit” is a segmentation. Table II shows all
possible segmentations that can be generated from the valid
phrases vector V3 in Figure 5.

334

Algorithm 1: ComputeValidPhrases(q, C)

Input : query q = 〈w1, w2, . . . , wl〉 where wi is a
keyword; a cache module C;

Output: a valid-phrase vector V ;

1 (qc, Vc)← FindLongestCachedPrefix(q, C)
2 m← number of keywords in qc
3 if m > 0 then // Cache hit

4 for i← 1 to m− 1 do // Copy the

valid-phrase vector

5 V [i]← Vc[i]

6 if wm == qc[m] then // The last

keyword of qc is a complete

keyword in q
7 V [m]← Vc[m]

8 else // Incremental computation for

the last keyword retrieved from

cache

9 V [m]← ∅

10 foreach (start,S) in Vc[m] do
11 newS ← compute active nodes for wm

12 incrementally from S
13 if newS == ∅ then
14 V [m]← V [m] ∪ (start,newS)

15 foreach (start,S) in V [m] do
// Incremental computation for

the phrases partially cached

16 for j ← m+ 1 to l do
17 newS ← compute active nodes
18 from S by appending wj

19 if newS == ∅ then break
20 V [j]← V [j] ∪ (start,newS)
21 S ← newS

22 for i← m+ 1 to l do // Computation of

non-cached phrases

23 S← compute active nodes for wi

24 V [i]← V [i] ∪ (i,S)
25 for j ← i+ 1 to l do
26 newS ← compute active nodes
27 from S by appending wj

28 if newS == ∅ then break
29 V [j]← V [j] ∪ (i,newS)
30 S← newS

31 cache (q, V) in C
32 return V

We develop a divide-and-conquer algorithm for generating
all the segmentations from the valid-phrase vector V . Each
phrase has a start position and an end position in the query.
The start position is stored in V [end] along with its computed
active-node set. If there is a segmentation for the query
〈w1, . . . , wstart−1〉, we can append the phrase [start, end]
to it to obtain a segmentation for the query 〈w1, . . . , wend〉.
Therefore, to compute all the segmentations for the first j
keywords, we can compute all the segmentations for the first
i − 1 keywords, where (i, Si,j) ∈ V [j], and append the

TABLE II. THREE SEGMENTATIONS FOR QUERY

q = 〈heart, surgery, unit〉.

1. “heart surgery unit”

2. “heart surgery | unit”

3. “heart | surgery | unit”

phrase [i, j] to each of these segmentations to form new
segmentations. This analysis helps us reduce the problem
of generating segmentations for the query 〈w1, . . . , wl〉 to
solving the subproblems of generating segmentations for each
query 〈w1, . . . , wi−1〉, where (i, Si,l) ∈ V [l]. Hence, the final
segmentations can be computed by starting the computation
from the last element of V . Algorithm 2 shows the recursive
algorithm. Line 3 is the base case for the recursion, where
the start position of the current phrase is the beginning of
the query. We can convert this recursive algorithm into a top-
down dynamic programming algorithm by memoizing all the
computed results for each end position.

Algorithm 2: GenerateSegmentations(q, V, end)

Input : a query with a list of keywords
q = {w1, w2, . . . , wl};
its valid-phrase vector V ;
a keyword position end (end ≤ l);

Output: a vector Pend of all valid segmentations of
w1, w2, . . . , wend

1 Pend ← ∅

2 foreach (start, Sstart,end) in V [end] do
3 if start == 1 then // Base Case

4 Pend ← Pend ∪ 〈wstart . . . wend〉

5 else
6 foreach seg in

GenerateSegmentations(q, V, start - 1)
do

7 seg ← seg | 〈wstart . . . wend〉
8 Pend ← Pend ∪ seg

9 return Pend

B. Ranking Segmentations

Each generated segmentation corresponds to a way of
accessing the indexes to compute its answers. The Query Plan
Builder needs to rank these segmentations to decide the final
query plan, which is an order of segmentations to be executed.
We can run these segmentations one by one until we find
enough answers (i.e., k results). Thus, the ranking needs to
guarantee that the answers to a high-rank segmentation are
more relevant than the answers to a low-rank segmentation.
There are different methods to rank a segmentation. Our
segmentation ranking relies on a segmentation comparator to
decide the final order of the segmentations. This comparator
compares two segmentations at a time based on the following
features and decides which segmentation has a higher ranking:
(1) The summation of the minimum edit distance between each
valid phrase in the segmentation and its active nodes; (2) The
number of phrases in the segmentation. The comparator ranks
the segmentation that has the smaller minimum edit distance

335

summation higher. If two segmentations have the same total
minimum edit distance, then it ranks the segmentation with
fewer segments higher.

As an example, for the query q = 〈hart, surgery〉,
consider the segmentation “hart | surgery” with two
valid phrases. Each of them has an exact match in the dic-
tionary D, so its summation of minimum edit distances is 0.
Consider another segmentation “hart surgery” with one
valid phrase. This phrase has an edit distance 1 to the term
“heart surgery”, which is minimum. Using this method,
we would rank the first segmentation higher due to its small
total edit distance. If two segmentations have the same total
minimum edit distance, then we can rank the segmentation
with fewer segments higher. When there are fewer phrases in
a segmentation, the number of keywords in a phrase increases.
Having more keywords in a phrase can result in better answers
because more keywords appear next to each other in the
answers. The segmentations in Table II are ranked based on
this feature. If two segmentations have both the same total
minimum distance and the number of phrases, then we assume
they have the same rank.

Notice that the answers to the segmentation where each
keyword is a separate phrase include the answers to all the
other segmentations. Therefore, once this segmentation is
executed, there is no need to execute the rest of the segmen-
tations in the plan. In the q = 〈hart, surgery〉 example, the
segmentation “hart surgery” is discarded from the query
plan since the segmentation “hart | surgery” is ranked
higher due to its smaller edit distance.

VII. EXPERIMENTS

In this section, we evaluate the performance of the pro-
posed techniques on real data sets. We implemented the fol-
lowing methods: (1) FindAll (“FA”): We found all the answers
and returned the top-k answers after sorting them based on
their relevancy score. (2) QuerySegmentation (“QS”): In this
approach, we computed a query plan based on valid segmenta-
tions, and ran the segmentations one by one until top-k answers
were computed. (3) TermPair (“TP”): We implemented the
approach described in Section III-C for only one-term and two-
term queries.

TABLE III. DATA SETS.

Data Set IMDB Enron Medline2

of records (millions) 0.7 0.5 10

of distinct keywords (millions) 0.76 1 4.6

Average record length 40 294 132

Data size 238 MB 969 MB 20 GB

We used three data sets in the experiments, namely
IMDB, Enron, and Medline. Table III shows the details
of the data sets. We obtained the IMDB data set from
www.imdb.com/interfaces. We used the data in the movies,
actors, and characters tables, and constructed a table in which
each record was a movie with a list of actors and a list of
characters. For this data set, we extracted the queries from
an AOL query log3, and selected those queries whose clicked

2We used one shard with 1.7 million records for all the experiments except
scalability.

3http://www.gregsadetsky.com/aol-data/

domain was IMDB.com. The Enron data set consisted of
email records with attributes such as date, sender, receiver,
subject, and body. For this data set, we used the queries
provided by [31]. The Medline data set consisted of more than
20 million medical publications, and we used its subsets of
different sizes to do experiments. For this data set, we used a
single-day query log from PubMed as analyzed in [32]. Based
on user-behavior statistics in instant search reported in [1], we
assumed 12% of the queries were copied and pasted while the
other queries were typed character by character.

In the experiments of fuzzy search, we used 1/3 as the
normalized edit-distance threshold. That is, we allowed no
typographical errors if a query prefix is within 3 characters,
up to 1 error if the length is between 4 and 6, up to 2 errors if
the length is between 7 and 9, and so on. All the experiments
were conducted on a Linux server running a Ubuntu 10.04
64-bit operating system, with two 2.93GHz Intel Xeon 6-core
processors, 96 GB of memory, and 2 TB of hard disk. To
satisfy the high-efficiency requirement of instant search, all
index structures were stored in memory.

A. Effect of Indexed Phrases on Index Size

We first compared the index size for different approaches.
For FA we only indexed single keywords. For QS choosing
what phrases to index is a data-dependent problem, and is
orthogonal to the approach we propose. We indexed the movie
names, actor names, and character names as phrases for the
IMDB data set. For the Enron data set, we extracted popular
bigrams and trigrams from the subject and body attributes. For
the Medline data set, we used 1.7 million records and indexed
the author names, affiliations, and mesh headings as phrases.
Additionally, we extracted popular bigrams and trigrams that
did not contain stop words from titles and abstracts. We added
the n-grams that occurred more than t = 100 times in the
data set to the index. In TP we chose window size w = 3 for
building term-pair index.

Figure 6 shows the index sizes for different approaches
on these data sets. The results showed that, not surprisingly,
the index size increased when the phrases were added to the
index. For instance, the total index size of FA that contained
only single keywords for Medline was 1.9GB while the total
index size of QS was 2.5GB, and the total index size of TP
was 5.9GB. This experiment also showed that indexing only
selected entities instead of all the term pairs reduced the index
size dramatically.

In our experiments the trie size increased drastically when
the phrases were added to the index. This is because each
phrase was an extension from an existing keyword in the trie
and these extensions made the trie very sparse. For this reason,
we compressed the trie by implementing a Patricia trie [33],
and this optimization reduced the size to approximately one
third of its uncompressed version. The similar trends were
observed in all the data sets. For simplicity, we reported only
the size of the compressed trie.

B. Efficiency of Computing Valid Phrases

We implemented and compared the algorithms for valid-
phrase computation for QS as explained in Sections V-A, V-B:
Basic and Incremental. Figure 7 shows the results for the

336

 0

 1000

 2000

 3000

 4000

FA QS TP

S
iz

e
 i
n

 m
e

m
o

ry
 (

M
B

)

Approach

 Patricia Trie
Forward Index
Inverted Index

(a) IMDB

 0

 1000

 2000

 3000

 4000

 5000

 6000

FA QS TP

S
iz

e
 i
n

 m
e

m
o

ry
 (

M
B

)

Approach

 Patricia Trie
Forward Index
Inverted Index

(b) Enron

 0

 1000

 2000

 3000

 4000

 5000

FA QS TP

S
iz

e
 i
n

 m
e

m
o

ry
 (

M
B

)

Approach

 Patricia Trie
Forward Index
Inverted Index

(c) Medline

Fig. 6. Index sizes for different approaches.

Medline data set. When the number of keywords increased,
the computation time also increased. This is because when the
query had more keywords, the number of phrases that needed
to be validated also increased. For example, the computation
times of the Basic algorithm for 4-keyword, 5-keyword, and
6-keyword queries were 36, 57, and 64 ms respectively. This
observation showed that the Basic algorithm cannot satisfy the
high-speed requirement of instant search when the number
of keywords in a query increased. At the same time, the
Incremental algorithm improved the efficiency tremendously.
For instance, for 6-keyword queries in Medline, the compu-
tation time was reduced from 64 ms to 3 ms. The reason for
this improvement is that the Incremental algorithm avoided
computation of previously computed phrases by using cached
result. We observed the similar trends for the other data sets.

 0

 10

 20

 30

 40

 50

 60

 70

 80

1 2 3 4 5 6

C
o
m

p
u
ta

ti
o

n
 T

im
e

 (
m

s
)

Number of Keywords

Basic
Incremental

Fig. 7. Performance of computing valid phrases in a query (Medline).

C. Query Time

We compared the average computation time of FA, QS,
and TP as the number of keywords in query varied. Fig-
ure 8 shows the results for the three data sets. Since TP
supports at most 2-keyword queries, we reported the query
computation time for 1-keyword and 2-keyword queries for
TP. The results for TP showed that it did not meet the high-
efficiency requirement of instant search. The main reason of
its slowness was indexing all the term pairs within a specified
window size; because it caused to have too many completions
for each query keyword, especially for short prefixes. From
this experiment we concluded that TP is not very suitable for
instant search. FA outperformed for the queries having more
than 3 keywords, while QS outperformed for 2-keyword and
3-keyword queries. For instance, for the Enron data set the
average query time for 2-keyword queries was 50 milliseconds
in FA and 4 milliseconds in QS, while for 4-keyword queries
it was 7 milliseconds in FA and 18 milliseconds in QS. We
discussed the reasons of this behavior in detail in the scalability
evaluation of these approaches.

 20

 40

 60

 80

 100

 120

1 2 3 4 5 6A
v
g

 C
o

m
p

u
ta

ti
o

n
 T

im
e

Number of Keywords

147 206

FA
QS
TP

(a) IMDB

 10

 20

 30

 40

 50

 60

1 2 3 4 5 6A
v
g

 C
o

m
p

u
ta

ti
o

n
 T

im
e

Number of Keywords

68 168

FA
QS
TP

(b) Enron

 20

 40

 60

 80

 100

 120

1 2 3 4 5 6A
v
g

 C
o

m
p

u
ta

ti
o

n
 T

im
e

Number of Keywords

167

FA
QS
TP

(c) Medline

Fig. 8. Performance Evaluation.

The experiments reported in Figure 8 used cache for incre-
mental computation. We also ran the experiments by disabling
cache, but we omit the results due to space limitation. We
observed similar trends as the experiments reported in Figure 8.
However, without cache the response time for long queries
exceeded the 100 ms threshold due to lack of incremental
computation. We concluded that caching is very crucial in
the instant search context to do incremental computation since
consequent queries in incremental typing usually differ from
each other by one character.

337

D. Cache Hit Rate

We also compared the cache hit rate of QS and FA
approaches for the experiments in Figure 8. The TP approach
did not have any incremental computation since it only works
for queries with up to 2 keywords. For this experiment, we
considered all the queries that retrieved the answers to an
earlier query from cache during incremental computation as
a cache hit. Figure 9 shows the cache hit rates of QS and FA
for the three data sets.

 20

 40

 60

 80

 100

IMDB Enron Medline

C
a
c
h
e
 H

it
 R

a
te

Data Set

QS
FA

Fig. 9. Cache Hit Rate.

We observed that FA had a better cache hit rate for all
the three data sets. We explain the reason with the example
query qi = 〈heart, surgery, unit〉. FA uses the answers to
the query qj = 〈heart, surgery〉, and intersects them with
the records that contain the keyword “unit”. However, in QS
if we have a valid segmentation “heart surgery unit”
and this segmentation returns k answers, it does not use any
earlier query from cache. Thus, FA always uses the answers
to an earlier query if they are cached. QS uses the cache only
if the segmentation of an earlier query is the prefix of the
segmentation of the current query.

E. Quality of Answers

To evaluate the quality of the answers returned by QS and
TP, we conducted a user study with a special user interface that
showed the top-10 answers from computer science publications
(DBLP4) computed and ranked by the FA approach. We
assumed FA returned the best answers, since it used a ranking
function that fully utilized the proximity information. We
asked 12 people to search for publications, authors, venues,
or combination of any of these fields, and give feedback
by selecting the relevant answers among the returned top-10
answers. With this study we collected 69 queries and 353
relevant answers for these queries. Most of the queries had
up to 3 keywords, while there were also a few queries with
4 keywords. We ran the same queries on QS and TP, and
measured their precision by computing what percentage of the
expected results were returned by these approaches. Based on
this analysis, the precision of QS was 81%, and the precision
of TP was 69%. We observed that QS did not perform well
for two types of queries: (1) the queries that contained rare
n-grams from the data since we did not index them, and (2)
the queries that was missing the beginning keywords of an
entity since we relied on prefix matching when computing a
valid phrase. TP mostly failed for the queries with more than
2-keywords. Since a significant portion of the query set was
3-keyword queries, the precision was degraded.

4http://dblp.uni-trier.de/xml/

F. Scalability

We evaluated the scalability of FA and QS using the
Medline data set. We did not include TP in this experiment
because of its prohibitive index size for big data sets. Figure 10
shows the average computation time for varying number of
keywords in the query as we increased the number of records
from 1 million to 10 millions. We observed that the average
computation time increased linearly in both approaches as we
increased the number of records.

Another interesting observation was that for 2-keyword
and 3-keyword queries QS gave the best results while FA
outperformed for the rest. For instance, using 10 million
records, the average computation time for 2-keyword queries
was 32 milliseconds in QS, and 387 milliseconds in FA. The
reason FA outperformed other approaches for queries more
than 3 keywords was due to the increase in the selectivity
of the query. Adding more keywords to a query resulted in
a smaller answer set, which is in favor of FA. On the other
hand, QS can generate a lot of valid segmentations with a
few answers due to high selectivity of the query, and running
those segmentations until the top-k answers were computed
degraded the performance significantly. For 2-keyword and
3-keyword queries, the answer sets can be very large, thus
early-termination improved the performance remarkably. For
1-term queries, all the three approaches returned the top-
k elements from the union of the inverted lists of similar
complete keywords to the given prefix. FA outperformed in
this case since it only considered single keyword completions
while the other approaches had also phrase completions.

This experiment also showed that QS approach is indeed
very useful since users predominantly use 2 and 3 keyword
queries [34].

 0

 200

 400

1M 5M 10MA
v
g

 C
o

m
p

u
ta

ti
o

n
 T

im
e

Number of Records

2-keyword
3-keyword
6-keyword
5-keyword
4-keyword
1-keyword

(a) FA

 0

 200

 400

 600

 800

 1000

1M 5M 10MA
v
g

 C
o

m
p

u
ta

ti
o

n
 T

im
e

Number of Records

6-keyword
5-keyword
4-keyword
3-keyword
2-keyword
1-keyword

(b) QS

Fig. 10. Scalability (Medline).

We summarize the experimental results as follows:

• TP requires too much space and is too slow to be
practical for instant search.

• FA is better for long queries (with at least four
keywords).

338

• QS works the best for 2-keyword and 3-keyword
queries, which are common in search applications.

• For single-keyword queries FA is slightly better due
to its compact trie index.

• Benefits of QS increase as the size of the data in-
creases.

VIII. CONCLUSIONS

In this paper we studied how to improve ranking of an
instant-fuzzy search system by considering proximity infor-
mation when we need to compute top-k answers. We studied
how to adapt existing solutions to solve this problem, including
computing all answers, doing early termination, and indexing
term pairs. We proposed a technique to index important
phrases to avoid the large space overhead of indexing all word
grams. We presented an incremental-computation algorithm for
finding the indexed phrases in a query efficiently, and studied
how to compute and rank the segmentations consisting of the
indexed phrases. We compared our techniques to the instant-
fuzzy adaptations of basic approaches. We conducted a very
thorough analysis by considering space, time, and relevancy
tradeoffs of these approaches. In particular, our experiments on
real data showed the efficiency of the proposed technique for
2-keyword and 3-keyword queries that are common in search
applications. We concluded that computing all the answers for
the other queries would give the best performance and satisfy
the high-efficiency requirement of instant search.

ACKNOWLEDGMENT

The authors Inci Cetindil, Jamshid Esmaelnezhad, and
Chen Li have financial interest in SRCH2, a company commer-
cializing techniques related to those described in this paper.

REFERENCES

[1] I. Cetindil, J. Esmaelnezhad, C. Li, and D. Newman, “Analysis of instant
search query logs,” in WebDB, 2012, pp. 7–12.

[2] R. B. Miller, “Response time in man-computer conversational
transactions,” in Proceedings of the December 9-11, 1968, fall joint

computer conference, part I, ser. AFIPS ’68 (Fall, part I). New
York, NY, USA: ACM, 1968, pp. 267–277. [Online]. Available:
http://doi.acm.org/10.1145/1476589.1476628

[3] C. Silverstein, M. R. Henzinger, H. Marais, and M. Moricz, “Analysis
of a very large web search engine query log,” SIGIR Forum, vol. 33,
no. 1, pp. 6–12, 1999.

[4] G. Li, J. Wang, C. Li, and J. Feng, “Supporting efficient top-k queries
in type-ahead search,” in SIGIR, 2012, pp. 355–364.

[5] R. Schenkel, A. Broschart, S. won Hwang, M. Theobald, and
G. Weikum, “Efficient text proximity search,” in SPIRE, 2007, pp. 287–
299.

[6] H. Yan, S. Shi, F. Zhang, T. Suel, and J.-R. Wen, “Efficient term
proximity search with term-pair indexes,” in CIKM, 2010, pp. 1229–
1238.

[7] M. Zhu, S. Shi, N. Yu, and J.-R. Wen, “Can phrase indexing help to
process non-phrase queries?” in CIKM, 2008, pp. 679–688.

[8] A. Jain and M. Pennacchiotti, “Open entity extraction from web search
query logs,” in COLING, 2010, pp. 510–518.

[9] K. Grabski and T. Scheffer, “Sentence completion,” in SIGIR, 2004, pp.
433–439.

[10] A. Nandi and H. V. Jagadish, “Effective phrase prediction,” in VLDB,
2007, pp. 219–230.

[11] H. Bast and I. Weber, “Type less, find more: fast autocompletion search
with a succinct index,” in SIGIR, 2006, pp. 364–371.

[12] H. Bast, A. Chitea, F. M. Suchanek, and I. Weber, “Ester: efficient
search on text, entities, and relations,” in SIGIR, 2007, pp. 671–678.

[13] H. Bast and I. Weber, “The completesearch engine: Interactive, efficient,
and towards ir& db integration,” in CIDR, 2007, pp. 88–95.

[14] S. Ji, G. Li, C. Li, and J. Feng, “Efficient interactive fuzzy keyword
search,” in WWW, 2009, pp. 371–380.

[15] S. Chaudhuri and R. Kaushik, “Extending autocompletion to tolerate
errors,” in SIGMOD Conference, 2009, pp. 707–718.

[16] G. Li, S. Ji, C. Li, and J. Feng, “Efficient type-ahead search on relational
data: a tastier approach,” in SIGMOD Conference, 2009, pp. 695–706.

[17] M. Hadjieleftheriou and C. Li, “Efficient approximate search on string
collections,” PVLDB, vol. 2, no. 2, pp. 1660–1661, 2009.

[18] K. Chakrabarti, S. Chaudhuri, V. Ganti, and D. Xin, “An efficient filter
for approximate membership checking,” in SIGMOD Conference, 2008,
pp. 805–818.

[19] S. Chaudhuri, V. Ganti, and R. Motwani, “Robust identification of fuzzy
duplicates,” in ICDE, 2005, pp. 865–876.

[20] A. Behm, S. Ji, C. Li, and J. Lu, “Space-constrained gram-based
indexing for efficient approximate string search,” in ICDE, 2009, pp.
604–615.

[21] R. Fagin, A. Lotem, and M. Naor, “Optimal aggregation algorithms for
middleware,” in PODS, 2001.

[22] F. Zhang, S. Shi, H. Yan, and J.-R. Wen, “Revisiting globally sorted
indexes for efficient document retrieval,” in WSDM, 2010, pp. 371–380.

[23] M. Persin, J. Zobel, and R. Sacks-Davis, “Filtered document retrieval
with frequency-sorted indexes,” JASIS, vol. 47, no. 10, pp. 749–764,
1996.

[24] R. Song, M. J. Taylor, J.-R. Wen, H.-W. Hon, and Y. Yu, “Viewing term
proximity from a different perspective,” in ECIR, 2008, pp. 346–357.

[25] T. Tao and C. Zhai, “An exploration of proximity measures in informa-
tion retrieval,” in SIGIR, 2007, pp. 295–302.

[26] M. Zhu, S. Shi, M. Li, and J.-R. Wen, “Effective top-k computation in
retrieving structured documents with term-proximity support,” in CIKM,
2007, pp. 771–780.

[27] S. Büttcher, C. L. A. Clarke, and B. Lushman, “Term proximity scoring
for ad-hoc retrieval on very large text collections,” in SIGIR, 2006, pp.
621–622.

[28] H. Zaragoza, N. Craswell, M. J. Taylor, S. Saria, and S. E. Robertson,
“Microsoft cambridge at trec 13: Web and hard tracks,” in TREC, 2004.

[29] A. Franz and T. Brants, “All our n-gram are belong to you,”
http://googleresearch.blogspot.com/2006/08/all-our-n-gram-are-belong-
to-you.html, Aug. 2006.

[30] A. Arampatzis and J. Kamps, “A study of query length,” in SIGIR,
2008, pp. 811–812.

[31] Z. Bao, B. Kimelfeld, and Y. Li, “A graph approach to spelling
correction in domain-centric search,” in ACL, 2011.

[32] J. R. Herskovic, L. Y. Tanaka, W. R. Hersh, and E. V. Bernstam,
“Research paper: A day in the life of pubmed: Analysis of a typical
day’s query log,” JAMIA, vol. 14, no. 2, pp. 212–220, 2007.

[33] D. R. Morrison, “Patricia - practical algorithm to retrieve information
coded in alphanumeric,” J. ACM, vol. 15, no. 4, pp. 514–534, 1968.

[34] “Keyword and search engines statistics,”
http://www.keyworddiscovery.com/keyword-stats.html?date=2013-
06-01, Jun. 2013.

339

